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INTRODUCTION

� Massively parallel computers more widely available,

� Monte Carlo algorithm scales well withNproc,

� ) Realism of Monte Carlo codes obtainable with short runs.

� Coupled UEDGE-DEGAS 2 follows success of B2-EIRENE,

� ) practical tool for analyzing experiments
& predicting conditions in future devices,

– Need techniques for minimizing impact of MC noise.



DEGAS 2 - EIRENE BENCHMARK

� Use UEDGE slab single-null geometry & plasma,

� Same atomic and surface physics in DEGAS 2 & EIRENE,

� Include recombination,

– PlasmaTe;i � 1 eV
) highlights numerical differences.

– Identify, then eliminate or minimize.

� Each run uses 80,000 flights,

– )� 1% statitistical error,

� Codes agree to within5%,
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– Where�K = mean forK flights,
– sK = �rsd�K = standard error.
– Apply to zones with�rsd < 20% (Central Limit Theorem),
– �min = 5% gives roughly normal distribution of�rel.

� More difficult for ion momentum & energy sources
which have�rsd � 50%,

– Codes agree within error bars,
– But, unable to detect any systematic discrepancy.

� Benchmark discussed in detail at:
http://w3.pppl.gov/degas2/Doc/degas2_all.pdf



DEGAS 2 PARALLELIZATION

� DEGAS 2 performance objectives:

1. Should exhibit nearly linear scaling withNproc,
2. Results independent of number & type of processors,
3. Run over heterogeneous network of computers.

� Developed suitable random number generator,

– Underlying arithmetic exact) reproducible,
– Each flight has its own random number sequence
) first step toward correlated sampling.

� PVM replaced with MPI,

– MPI more portable and widely available,
– Some implementations (MPICH) for heterogeneous networks.

� Load balancing needed for heterogeneous systems,

– Break upN flights into, say, 100 “fragments”,
– “Master” passes fragments out to “slaves”,
– Faster slaves get more fragments to do.

� Must minimize communication,

– Slaves receive problem description at start,
– Each flight fragment contains:

1. Index of first flight in fragment (label),
2. Number of flights,
3. Random number seed,
4. Source group number.

– At end of fragment, slave sends signal to master,
� Master replies with another fragment,
� Or request for results.



� Results from each flight stored in 1 array,

– Its data added to array for that slave’s fragment,
– Fragment data are summed into an output array.
– To speed processing & communication,

flight & fragment arrays store only nonzero elements,
� Pointer arrays map data to full array.

– Accuracy in accumulating data assured with:

Mk =Mk�1 + (xk �Mk�1)=k
Sk = Sk�1 + (xk �Mk�1)(xk �Mk);

– WhereM1 = x1 & S1 = 0,

– � =
r
SN=(N � 1).

� Fig. 1: scaling of DEGAS 2 on Origin 2000 & PC cluster,

– For 2000 flights, communication time> computation time,
– Near linear scaling for2000Nproc flights.
– PC cluster:
� 9 dual processor (450 MHz Pentium III) PC’s,
� Running LINUX with NAG & Portland Group compilers,
� 2000Nproc flights,
� � half as fast as Origin 2000 per processor.
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Figure 1: The processing speed of DEGAS 2 increases nearly linearly with the number of processors
when the number of flights per processor is kept constant (circles for Origin 2000; triangles for a
PC cluster). Ideal, linear performance for the “master - slave” paradigm is given by the dashed line.
The processing rate for a constant number of flights saturates (squares).

UEDGE-DEGAS 2 COUPLING

� Coupling done same as for UEDGE-EIRENE,

– Codes run separately,
– Data transferred through files,
– UEDGE run in time-dependent mode,
– UEDGE treats DEGAS 2 sources explicitly.



� Repeat low & high power UEDGE-EIRENE runs
from Rensink et al.,

– D = 0:5 m2/s,
– �e;i = 0:7 m2/s,

– Core plasma density= 7� 1019 m�3,
– Input power = 48 kW (low power) & 84 kW (high power).

� Global results match to within7%,

� Peak temperatures differ slightly,

– Low power: 0.9 eV for DEGAS 2, 0.8 eV for EIRENE,
– High power: 5 eV for DEGAS 2, 6 eV for EIRENE.
– Differences may be due to use of rescaling

for particle conservation in DEGAS 2
) effectively different recycling coefficient.

� UEDGE run times between 12 & 300 sec,

– DEGAS 2 run on 4 Suns &� 6 Dec Alphas,
– 10,000 flights,
– � 100 sec / time step outside UEDGE (high power),
– � 1=2 spent in DEGAS 2,
– UEDGE run time significantly shorter when DEGAS 2

uses suppressed absorption at surfaces.



COUPLING IMPROVEMENT

� Sources computed by DEGAS 2 should exactly and reproducibly
reflect variations in plasma given by UEDGE,

– Monte Carlo noise can dominate the response,
– Correlated sampling can minimize its impact.

� Correlated sampling

– First step: use same random number chain for a given flight,
– Second, sample from same initial source distribution,
� Account for source changes with weight factor,

wj = Sj=S
0
j : (1)

� ) flight starts with same~x and~v in each run.
– Tracks will eventually diverge,
– Full correlated sampling would adjust with weights.

� Attempt to quantify effect of Eq. (1),

– Baseline plasma from higher power UEDGE-DEGAS 2 run,
– 1,280,000 flights, recycling source only.
– Simulate plasma change with

ad hoc perturbation in recycling source,
� Choose so perturbation strength of10% moves peak,
� Conserves particles.

– Diagnostic: ion source integrated along flux tube.

– DEGAS 2 response:(S0
i � Spert

i )=0:1
) “Reference” curve,

– Repeat with 5000 flights at4:5% and5:5% perturbations
) “Standard”,

– Use Eq. (1)) “Weighted”.
– Note difference in scale!
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Figure 2: A10% perturbation is added (Perturbed Current) to the ion flux to the target computed by
UEDGE (Ion Current). The normalized change in the ion source integrated along a flux tube is com-
puted with 5,000 (Standard) and 1,280,000 (Reference) flights. If the perturbation is implemented
by adding weight factors, eq. 1, an accurate result (Weighted) is obtained with just 5,000 flights.

� Effect of Eq. (1) on coupled runs:

– Fig. 3
– Source residuals drop 30 –40%,
– Plasma residuals drop� 20%.

� Doing better will require more complete correlation,

� Other options (implicit treatments) may exist.
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Figure 3: Time evolution of the peak electron temperature at the target in a UEDGE-DEGAS 2 run.
The starting point,t = 0, is a self-consistent run of UEDGE with its Navier-Stokes fluid neutral
model. Fort < 0:0015, DEGAS 2 samples the source distributions directly. Aftert = 0:0015,
source distribution changes are accounted for with eq. 1. The residual in the ion momentum source
(gray curve) drops noticeably at this time.

EXAMPLE C-MOD RUN

� Test UEDGE-DEGAS 2 in real geometry,

� Just an example,

– Old (1994) equilibrium,
– UEDGE parameters from a DIII-D run,
� ne probably too low for C-Mod.

� Use UEDGE to generate mesh,

– Including nonorthogonal regions to match plate shapes,
– Add vacuum regions for DEGAS 2.

� Converges relatively quickly to steady-state,

– Complete run required about 12 hours.
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COPIES

� This poster can be found on the Web at:

http://w3.pppl.gov/˜dstotler/pet7_poster.pdf

� The associated paper will appear inContrib. Plasma Phys.(pro-
ceedings of 7th Plasma Edge Theory Workshop)
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